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Motto, Modus Operandi & Contributions (+Big Picture)

• Motto
– Think Yesterday, Execute Today and Innovate ‘the’ Tomorrow.

• Modus Operandi
– Respect and Innov8.

• Contributions            Team: Abdul, Brent, Chong,         
Deepankar, Kai, Kevin,  
Nachiket, Pradeep



Business Aspects

• Need for fabricating lightweight, organic looking,
smaller length scale parts has increased tremendously.

• Patents are expiring. Evolution of new desktop,
research and production machines

• Simulation techniques and computer architectures are
better than ever-will be elaborated as we go along.

• Business models have improved accordingly as the
times changed from ‘Mass Production’ to ‘Mass
Customization’ in the last 20 years.



AM can now enable

…control of the overall geometry of a part, which could 
be made up of a truss network, where each truss has an 
optimized thickness and could have an individually 
controllable microstructure or material.

But we can’t efficiently:
• Design structures this complex in CAD
• Predict what our machines will do when we print a new 

geometry we haven’t printed before
• Predict the differences between printing the  same part in 

two different locations/orientations
• Predict how different process parameters affect dimensional

accuracy, microstructure and part performance

Courtesy David Rosen, Georgia 
Tech



Problem Identification 
(Decoupling various aspects)

Materials
• Form-Powder, Wire or Pellet
• Metals/alloys

Geometry
• Prismatic
• Organic

Energy Source
• Laser beam
• Electron beam
• Deformation boundary 
conditions

Processing
• Directed Energy Deposition
• Powder Bed Processing 
• Roll Bonding/Friction Surfacing/ 

UAM



Why Numerical Techniques?

• Additive manufacturing energy source size scales are much
smaller compared to the entire geometry leading to a myriad of
microstructures unlike traditional manufacturing processes.

• Additive manufacturing also eases freeform structure fabrication
and ‘Testing on simplified geometries with more or less uniform
microstructures is not enough’. Sub-size testing in SEM etc. is
required.

• In-situ experiments such as measuring spatio-temporal thermal
evolutions are hard to perform due to the dynamics involved in
the process.



Materials Science Aspects



Phases & Microstructures

End of solidification via experiment-
Asymptotic assumption

30-7-0.03 without C as fast diffuser30-7-0.03 C as fast diffuser30-7-0.03 C as fast diffuser



Thermo-physical property capture



Deleterious phase precipitation at close to our cooling rates M23C6 

size distributions in BCC phase.

M23C6 precipitation at 10-3 s and at 1000K. Cooling 
rate ~ 6.5× 105 0C/s
Almost LENS cooling rate. Lower bound of SLM 
cooling rate 

M23C6 precipitation at 10-3 s and at 1000K. Cooling 
rate ~ 8× 106 0C/s
Almost LENS cooling rate. Upper bound of SLM 
cooling rate 

Onset of deleterious
M23C6 precipitation

@ 1388 K

1200 K

1000 K 800 K

Deleterious Phase Precipitations



Multi-scale Geometrical aspects



Some mesh examples



Process-Materials Coupling



Metal laser sintering is a technique that uses a laser as the power source to 
sinter powdered metal material, aiming the laser automatically at points in 
space defined by a 3D model, binding the material together to create a solid 
structure.

Metal Laser Sintering






Problem Complexity
THE CORRECT ANSWER REQUIRES VECTOR-BY-VECTOR 
COMPUTATION

Without Supports
Layers: 66
Hatches Considered: 17,490
Laser Positions: 13,216,038

With pillar supports
Layers: 233
Hatches Considered: 61,745
Laser Positions: 25,766,422

ANSYS Computational Time 
~150 years

40mm x 5mm x 2mm part



Global-local



Dynamic Meshing and 
Intelligent Assembly Strategy



Suite of Efficiency solvers

• Automatic stiffness generation for part, heat affected and laser input length 
scales.

• On-the-fly runtime Periodic and Higher Order Homogenization
• Eigensolver methodology incorporation-isoparametric formulation for 

elements no longer used.
• Woodburry update using eigen methodology (under implementation)



Surface roughness
Case: 195 W, 200 mm/s
Mean: 15.6 𝜇𝜇m
STD: 14.7 𝜇𝜇m



Some Results (Assymetric melt pool in17-4 PH)

In-situ Solutionizing in 17-4PH



Some results 
(Porosity of arbitrary powders)



EBSD image reconstruction 
(for no solid state transformations in cubic polycrystalline materials)

[0-10] 

Rotation of the dotted square
plane about [100] long
direction of laser traverse due
to Marangoni convection
currents inside the melt pool.

Melt Pool 

[100] Crystallographic Orientation
[001] 

[010] 

[011] 

[0-11] 



Experimental validations

(a) (b)



Inputs
Crystal structure (Euler angles & 

dislocation density), thermal history 
and mechanical loading information 

(e.g. tensile/fatigue test).

Outputs
Dislocation Density history, stress/strain 

curves, slip details, Modified Microstructure 
(grain size, orientation, etc)

Structure      Properties
Solver

3DSIM
Material Solver

Multi-scale Dislocation Density based 
Crystal Plasticity  Finite Element Solver



Validation of Mechanical Property Predictions

Ti64 Tensile Behavior (EBM processing)



Process-Structure-Performance Linkage



Demo of Thermal Solver

195W 1200mm/s 250W 800mm/s

Demo information: top surface with different combination of laser power and speed



Isothermal Contour of Temperature Field



Material State Tracking

29

1 2

34

5

335W 1800mm/s

• Spatiotemporal thermal response of part is predicted using 3DSIM’s Finite Element Method 
(FEM) rapid response thermal solver. 

• Thermal history tracked at any point of interest
phases determined by comparing 𝑇𝑇 and 𝑑𝑑𝑇𝑇/𝑑𝑑𝑑𝑑 against CCT diagram



Residual Stress and Warping (Nachiket)



Other Capabilities

• Case A- voids due to lack of fusion (less overlap between scan lines)
• Greater heat accumulation in corners with short scan lines (top right)
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335W 1800mm/s 380W 850mm/s

Voids Comparison:



Support Optimization Tool

Experiment Sample Stress based optimized support structure(Showing 
in 3D and 2D)

FEM Stress calculation

Supports structure with non-uniform thickness

Supports structure with non-uniform spacing 
(single bead wall)

Support structure Example: Standard 



Support Optimization Tool (cont.)

CAD model

Scan pattern

Displacement distribution
Unit: m Support structure

Support structure Example: Sample with oriented scan pattern



Questions
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